login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067145
Shifts left under reversion.
10
1, 1, -1, 3, -13, 69, -419, 2809, -20353, 157199, -1281993, 10963825, -97828031, 907177801, -8716049417, 86553001779, -886573220093, 9351927111901, -101447092428243, 1130357986741545, -12923637003161409, 151479552582252239, -1818756036793636033
OFFSET
1,4
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f. satisfies A^(-1)(x) = A(x)/x - 1.
G.f. satisfies: A(A(x)) = (1+x)*A(x) = g.f. of A107094. - Paul D. Hanna, May 12 2005
G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(a0,a1,a2) = a1 - a2 + a0*a1. - Michael Somos, May 21 2005
a(n) = T(n-1,1), n > 1, a(1) = 1, T(n,m) = (m/n) * Sum_{k=1..n-m} T(n-m,k) * (-1)^k * binomial(k+n-1, n-1), n > m, T(n,n) = 1. - Vladimir Kruchinin, May 06 2012
MATHEMATICA
Nest[InverseSeries[#] x + x &, x + O[x]^2, 50][[3]] (* Vladimir Reshetnikov, Aug 07 2019 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=x+O(x^2); for(i=2, n, A=x*(1+serreverse(A))); polcoeff(A, n))} /* Michael Somos, May 21 2005 */
(Maxima) T(n, m):=if n=m then 1 else m/n*sum(T(n-m, k)*(-1)^k*binomial(k+n-1, n-1), k, 1, n-m); a(n):=if n=1 then 1 else T(n-1, 1); /* Vladimir Kruchinin, May 06 2012 */
CROSSREFS
Cf. A107094.
Apart from signs, same as A088714. - Philippe Deléham, Jun 18 2006
Sequence in context: A368708 A352855 A088714 * A192739 A088368 A196794
KEYWORD
sign,eigen
AUTHOR
Christian G. Bower, Jan 03 2002
STATUS
approved