login
A067141
Primes p beginning consecutive prime-difference pattern as follows: p, (16, 2, 16, 2), p+36.
5
225733, 819373, 830293, 856993, 895633, 924793, 1138393, 1210003, 1214623, 1353223, 1526053, 2051443, 2183773, 2298853, 2345443, 3169723, 3254773, 3287293, 3539743, 3675613, 3847603, 4630063, 4633003, 5137003, 5238403
OFFSET
1,1
LINKS
EXAMPLE
First term a(1)=p(20082)=225773; it is followed by 225789, 225791, 225807, 225809=p(20086) primes, where the 4 corresponding consecutive differences equal {16, 2, 16, 2}. See analogous cases A022008, A067140.
MATHEMATICA
d[x_] := Prime[x+1]-Prime[x] Do[If[Equal[d[n], 16]&&Equal[d[n+1], 2]&& Equal[d[n+2], 16]&&Equal[d[n+3], 2], k=k+1; Print[Prime[n]]], {n, 1, 10000000}]
Select[Partition[Prime[Range[400000]], 5, 1], Differences[#]=={16, 2, 16, 2}&][[All, 1]] (* Harvey P. Dale, Jan 01 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 02 2002
STATUS
approved