login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(Prime(n)# - 4)/2 is prime, where x# is the primorial A034386(x).
24

%I #13 Sep 29 2017 21:30:02

%S 3,4,5,6,7,8,9,11,13,16,20,27,39,83,103,122,129,145,279,393,608,798,

%T 929,1164,1266,1491,2043,3276,3426,7119,15711,18424

%N (Prime(n)# - 4)/2 is prime, where x# is the primorial A034386(x).

%C n such that A002110(n)/2 - 2 is prime.

%C a(33) > 25000. - _Robert Price_, Sep 29 2017

%t p = 1; Do[p = p*Prime[n]; If[PrimeQ[(p - 4)/2], Print[n]], {n, 1, 400} ]

%t Flatten[Position[Rest[FoldList[Times,1,Prime[Range[2100]]]],_?(PrimeQ[(#-4)/2]&)]] (* _Harvey P. Dale_, Nov 22 2014 *)

%Y Cf. A002110, A067024, A067027.

%K nonn

%O 1,1

%A _Labos Elemer_, Dec 29 2001

%E More terms from _Robert G. Wilson v_, Dec 30 2001

%E a(21)-a(27) from _Ray Chandler_, Jun 16 2013

%E a(28)-a(32) from _Robert Price_, Sep 29 2017