Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Jun 13 2015 00:50:31
%S 32,33,682,779,15292,17435,342562,390581,7673992,8749697,171910882,
%T 196008563,3851105332,4390935659,86271515242,98364661565,
%U 1932633283312,2203540975361,43294375870042,49363183412027,969869968690732,1105821903842843,21726788694026482
%N a(2n) and a(2n+1) are side lengths of a Beentjes sequence of perfect squared rectangles, starting with a 32 X 33 rectangle.
%H Colin Barker, <a href="/A067010/b067010.txt">Table of n, a(n) for n = 0..1000</a>
%H P. Beentjes, <a href="http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-3-344.pdf">An algorithm for the generation of perfect squared rectangles of arbitrary dimension</a>, Nieuw Arch. Wisk. 5/1 (2000) 344.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,22,0,9).
%F a(2n) = 11*a(2n-2)+10*a(2n-1), a(2n+1) = 13*a(2n-2)+11*a(2n-1), a(0) = 32, a(1) = 33.
%F a(n) = 22*a(n-2)+9*a(n-4) for n>3. - _Colin Barker_, May 26 2015
%F G.f.: -(53*x^3-22*x^2+33*x+32) / (9*x^4+22*x^2-1). - _Colin Barker_, May 26 2015
%o (PARI) Vec(-(53*x^3-22*x^2+33*x+32) / (9*x^4+22*x^2-1) + O(x^100)) \\ _Colin Barker_, May 26 2015
%Y Cf. A067011.
%K nonn,easy
%O 0,1
%A _Floor van Lamoen_, Dec 26 2001