login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066932
a(n) is the denominator of b(n) where b(n)=1/b(n-1)+1/b(n-2) with b(1)=1 and b(2)=2.
4
1, 1, 2, 6, 21, 224, 10848, 4843293, 98262557120, 989063619297120960, 197348115975871052843094930213, 380244324677612882673067751880150651746235378560
OFFSET
1,3
COMMENTS
Limit_{n->oo} b(n)=sqrt(2) with geometric convergence since abs(b(n)-sqrt(2))<2*2^(-n/2)
FORMULA
a(n+1) = A057677(n)*A057677(n-1). - Benoit Cloitre, Oct 25 2005
a(n) is the numerator of c(n) where c(n)=1/(c(n-1)+c(n-2)) with c(0)=c(1)=1. - Mark Dols, Jul 17 2009
MATHEMATICA
nxt[{a_, b_}]:={b, 1/a+1/b}; NestList[nxt, {1, 2}, 20][[;; , 1]]//Denominator (* Harvey P. Dale, Apr 02 2024 *)
CROSSREFS
Cf. A057677 (numerator), A074937, A162924, A162926.
Sequence in context: A110306 A351691 A028936 * A181754 A367678 A368005
KEYWORD
nonn,frac
AUTHOR
Zak Seidov, Oct 24 2002
EXTENSIONS
Edited by Benoit Cloitre, Oct 25 2005
STATUS
approved