Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 26 2019 06:48:10
%S 7,2,5,3,19,17,17,7,7,23,5,13,13,109,29,11,11,11,19,19,19,19,107,107,
%T 17,17,17,17,113,113,113,7,41,41,103,103,23,23,23,23,23,23,23,67,31,
%U 31,31,31,31,31,13,13,13,13,101,101,13,13,127,83,127,47,47,109,47,109,109
%N Primes in A006577.
%H Robert Israel, <a href="/A066903/b066903.txt">Table of n, a(n) for n = 1..10000</a>
%e a(1) = 7 because the first prime in A006577 is A006577(3) = 7.
%p N:= 1000; # to get the first N terms
%p Collatz:= proc(n) option remember;
%p if n::even then 1+Collatz(n/2)
%p else 1+Collatz(3*n+1)
%p fi
%p end proc;
%p Collatz(1):= 0;
%p count:= 0;
%p for i from 1 while count < N do
%p x:= Collatz(i);
%p if isprime(x) then count:= count+1; A[count]:= x fi;
%p od:
%p seq(A[i],i=1..N); # _Robert Israel_, Jun 01 2014
%t M = 100;
%t Collatz[n_] := Collatz[n] = If[EvenQ[n], 1+Collatz[n/2], 1+Collatz[3n+1]];
%t Collatz[1] = 0;
%t count = 0;
%t For[i = 1, count < M, i++, x = Collatz[i]; If[PrimeQ[x], count = count+1; a[count] = x]];
%t Array[a, M] (* _Jean-François Alcover_, Mar 26 2019, after _Robert Israel_ *)
%Y Cf. A006577.
%K nonn,look
%O 1,1
%A K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com), Dec 20 2001
%E More terms from _Sascha Kurz_, Mar 23 2002
%E Offset corrected by _Robert Israel_, Jun 01 2014