login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of odd parts in all partitions of n.
28

%I #82 Jan 15 2025 04:17:39

%S 1,2,5,8,15,24,39,58,90,130,190,268,379,522,722,974,1317,1754,2330,

%T 3058,4010,5200,6731,8642,11068,14076,17864,22528,28347,35490,44320,

%U 55100,68355,84450,104111,127898,156779,191574,233625,284070,344745,417292,504151

%N Total number of odd parts in all partitions of n.

%C Also sum of all odd-indexed parts minus the sum of all even-indexed parts of all partitions of n (Cf. A206563). - _Omar E. Pol_, Feb 12 2012

%C Column 1 of A206563. - _Omar E. Pol_, Feb 15 2012

%C Suppose that p=[p(1),p(2),p(3),...] is a partition of n with parts in nonincreasing order. Let f(p) = p(1) - p(2) + p(3) - ... be the alternating sum of parts of p and let F(n) = sum of alternating sums of all partitions of n. Conjecture: F(n) = A066897(n) for n >= 1. - _Clark Kimberling_, May 17 2019

%C From _Omar E. Pol_, Apr 02 2023: (Start)

%C Convolution of A000041 and A001227.

%C Convolution of A002865 and A060831.

%C a(n) is also the total number of odd divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned odd divisors are also all odd parts of all partitions of n. (End)

%C a(n) is odd iff n is a term of A067567 (proof: n*p(n) = the sum of the parts in all the partitions of n == the number of odd parts in all partitions of n (mod 2). Hence the number of odd parts in all partitions of n is odd iff n*p(n) is odd, equivalently, iff both n and p(n) are odd). - _Peter Bala_, Jan 11 2025

%H Vaclav Kotesovec, <a href="/A066897/b066897.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)

%F a(n) = Sum_{k=1..n} b(k)*numbpart(n-k), where b(k)=A001227(k)=number of odd divisors of k and numbpart() is A000041. - _Vladeta Jovovic_, Jan 26 2002

%F a(n) = Sum_{k=0..n} k*A103919(n,k). - _Emeric Deutsch_, Mar 13 2006

%F G.f.: Sum_{j>=1}(x^(2j-1)/(1-x^(2j-1)))/Product_{j>=1}(1-x^j). - _Emeric Deutsch_, Mar 13 2006

%F a(n) = A066898(n) + A209423(n) = A006128(n) - A066898(n). [_Reinhard Zumkeller_, Mar 09 2012]

%F a(n) = A207381(n) - A207382(n). - _Omar E. Pol_, Mar 11 2012

%F a(n) = (A006128(n) + A209423(n))/2. - _Vaclav Kotesovec_, May 25 2018

%F a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(24*n/Pi^2)) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 25 2018

%e a(4) = 8 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], we have a total of 0+2+0+2+4=8 odd parts.

%p g:=sum(x^(2*j-1)/(1-x^(2*j-1)),j=1..70)/product(1-x^j,j=1..70): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..44);

%p # _Emeric Deutsch_, Mar 13 2006

%p b:= proc(n, i) option remember; local f, g;

%p if n=0 or i=1 then [1, n]

%p else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));

%p [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]

%p fi

%p end:

%p a:= n-> b(n, n)[2]:

%p seq(a(n), n=1..50);

%p # _Alois P. Heinz_, Mar 22 2012

%t f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]

%t o[n_] := Sum[f[n, i], {i, 1, n, 2}]

%t e[n_] := Sum[f[n, i], {i, 2, n, 2}]

%t Table[o[n], {n, 1, 45}] (* A066897 *)

%t Table[e[n], {n, 1, 45}] (* A066898 *)

%t %% - % (* A209423 *)

%t (* _Clark Kimberling_, Mar 08 2012 *)

%t b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 26 2015, after _Alois P. Heinz_ *)

%o (Haskell)

%o a066897 = p 0 1 where

%o p o _ 0 = o

%o p o k m | m < k = 0

%o | otherwise = p (o + mod k 2) k (m - k) + p o (k + 1) m

%o -- _Reinhard Zumkeller_, Mar 09 2012

%o (Haskell)

%o a066897 = length . filter odd . concat . ps 1 where

%o ps _ 0 = [[]]

%o ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]

%o -- _Reinhard Zumkeller_, Jul 13 2013

%Y Cf. A000041, A001227, A001620, A002865, A006128, A060831, A066898, A066966, A066967, A103919, A206563, A207381, A207382, A209423, A338156.

%K easy,nonn,changed

%O 1,2

%A _Naohiro Nomoto_, Jan 24 2002

%E More terms from _Vladeta Jovovic_, Jan 26 2002