login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k divides prime(k) + prime(k+1).
3

%I #25 Sep 08 2022 08:45:05

%S 1,2,3,6,10,16,30,120,182,439,1058,4122,25356,40086,40090,40114,40120,

%T 63416,100347,159222,251708,399930,637328,637336,637340,1014636,

%U 2582486,4124468,6592708,6592728,10553440,10553445,10553829,16899052,27067138,179992932

%N Numbers k such that k divides prime(k) + prime(k+1).

%C Larger terms computed with the help of Kim Walisch's primecount. a(69) > 5*10^14. - _Giovanni Resta_, Jul 14 2018

%H Giovanni Resta, <a href="/A066895/b066895.txt">Table of n, a(n) for n = 1..68</a>

%t Select[Range[10^5], Mod[Prime[#] + Prime[# + 1], #] == 0 &] (* _Giovanni Resta_, Jul 14 2018 *)

%o (PARI) {a=2;b=2;for(n=1,10^6,b=nextprime(b+1);(a+b)%n==0&print(n);a=b)} \\ _Zak Seidov_, Dec 28 2010

%o (Magma) S:=[]; p:=2; q:=p; for n in [1..10^7] do q:=NextPrime(q); if (p+q) mod n eq 0 then Append(~S, n); end if; p:=q; end for; S; // _Klaus Brockhaus_, Dec 28 2010

%K nonn

%O 1,2

%A _Benoit Cloitre_, Jan 24 2002

%E Additional terms provided by _Harvey P. Dale_, Jan 28, 2002

%E More terms from _David W. Wilson_, Feb 20 2002

%E Merged with an entry submitted by _Zak Seidov_, Dec 28 2010

%E a(35)-a(36) from _Giovanni Resta_, Jul 14 2018