

A066867


Numbers n such that 2^n has 7 as its fourth decimal digit from the right.


1



21, 24, 27, 32, 40, 46, 56, 62, 73, 85, 94, 141, 157, 164, 170, 175, 183, 188, 216, 228, 234, 237, 261, 265, 268, 293, 300, 317, 331, 339, 349, 355, 359, 369, 376, 379, 386, 403, 410, 430, 442, 447, 451, 454, 458, 463, 472, 495, 498
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A sequence of no importance apart from the reference, which attributes the solution of this to John von Neumann, beating a computer to the solution.


REFERENCES

Sylvia Nasar, A Beautiful Mind (1998), p. 80.


LINKS

Table of n, a(n) for n=1..49.


MATHEMATICA

Select[ Range[ 10, 500 ], IntegerDigits[ 2^# ][ [ 4 ] ] == 7 & ]


CROSSREFS

Cf. A068345.
Sequence in context: A303313 A257642 A332922 * A111356 A295692 A033267
Adjacent sequences: A066864 A066865 A066866 * A066868 A066869 A066870


KEYWORD

nonn,base


AUTHOR

Harvey P. Dale, Jan 21 2002


STATUS

approved



