login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(2^((n*(n+1)/2)) + 1, 2^n + 1).
1

%I #18 Dec 11 2024 15:03:59

%S 3,1,1,1,33,1,1,1,513,1,1,1,8193,1,1,1,131073,1,1,1,2097153,1,1,1,

%T 33554433,1,1,1,536870913,1,1,1,8589934593,1,1,1,137438953473,1,1,1,

%U 2199023255553,1,1,1,35184372088833,1,1,1,562949953421313,1,1,1

%N a(n) = gcd(2^((n*(n+1)/2)) + 1, 2^n + 1).

%H Harry J. Smith, <a href="/A066827/b066827.txt">Table of n, a(n) for n = 1..500</a>

%F If n is not congruent to 1 mod 4, a(n) = 1. If n is congruent to 1 mod 4, a(n) = 2^n + 1.

%F G.f.: (-16x^5-2x^2+3x)/(16x^4-1)/(x-1). - _Ralf Stephan_, Mar 12 2003

%t Table[If[Mod[n,4]==1,2^n+1,1],{n,80}] (* _Harvey P. Dale_, Jun 30 2022 *)

%o (PARI) a(n) = { gcd(2^((n*(n+1)/2)) + 1, 2^n + 1) } \\ _Harry J. Smith_, Mar 30 2010

%K nonn

%O 1,1

%A _Benoit Cloitre_, Jan 20 2002