Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Apr 28 2020 07:17:11
%S 1,1,2,3,6,8,14,19,32,44,67,91,139,186,269,362,518,687,960,1267,1747,
%T 2294,3106,4052,5449,7063,9365,12092,15914,20422,26639,34029,44091,
%U 56076,72110,91306,116808,147272,187224,235201,297594,372390,468844,584644,732942
%N Number of representations of n as a sum of products of positive integers. 1 is not allowed as a factor, unless it is the only factor. Representations which differ only in the order of terms or factors are considered equivalent.
%H Alois P. Heinz, <a href="/A066739/b066739.txt">Table of n, a(n) for n = 0..10000</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) = Sum_{pi} Product_{m=1..n} binomial(k(m)+A001055(m)-1, k(m)), where pi runs through all partitions k(1) + 2 * k( 2) + ... + n * k(n) = n. a(n)=1/n*Sum_{m=1..n} a(n-m)*b(m), n > 0, a(0)=1, b(m)=Sum_{d|m} d*A001055(d). Euler transform of A001055(n): Product_{m=1..infinity} (1-x^m)^(-A001055(m)). - _Vladeta Jovovic_, Jan 21 2002
%e For n=5, 5 = 4+1 = 2*2+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1, so a(5) = 8.
%e For n=8, 8 = 4*2 = 2*2*2 = ... = 4+4 = 2*2+4 = 2*2+2*2 = ...; note that there are 3 ways to factor the terms of 4+4. In general, if a partition contains a number k exactly r times, then the number of ways to factor the k's is the binomial coefficient C(A001055(k)+r-1,r).
%p with(numtheory):
%p b:= proc(n, k) option remember;
%p `if`(n>k, 0, 1) +`if`(isprime(n), 0,
%p add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
%p end:
%p a:= proc(n) option remember;
%p `if`(n=0, 1, add(add(d*b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Apr 22 2012
%t p[ n_, 1 ] := If[ n==1, 1, 0 ]; p[ 1, k_ ] := 1; p[ n_, k_ ] := p[ n, k ]=p[ n, k-1 ]+If[ Mod[ n, k ]==0, p[ n/k, k ], 0 ]; A001055[ n_ ] := p[ n, n ]; a[ n_, 1 ] := 1; a[ 0, k_ ] := 1; a[ n_, k_ ] := If[ k>n, a[ n, n ], a[ n, k ]=a[ n, k-1 ]+Sum[ Binomial[ A001055[ k ]+r-1, r ]a[ n-k*r, k-1 ], {r, 1, Floor[ n/k ]} ] ]; a[ n_ ] := a[ n, n ]; (* p[ n, k ]=number of factorizations of n with factors <= k. a[ n, k ]=number of representations of n as a sum of products of positive integers, with summands <= k *)
%t b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; a[0] = 1; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSum[j, #*b[#, #]&]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Nov 10 2015, after _Alois P. Heinz_ *)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
%t Table[Length[Union[Sort/@Join@@Table[Tuples[facs/@ptn],{ptn,IntegerPartitions[n]}]]],{n,50}] (* _Gus Wiseman_, Sep 05 2018 *)
%o (Python)
%o from sympy.core.cache import cacheit
%o from sympy import divisors, isprime
%o @cacheit
%o def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum([0 if d>k else b(n//d, d) for d in divisors(n)[1:-1]]))
%o @cacheit
%o def a(n): return 1 if n==0 else sum(sum(d*b(d, d) for d in divisors(j))*a(n - j) for j in range(1, n + 1))//n
%o print([a(n) for n in range(61)]) # _Indranil Ghosh_, Aug 19 2017, after Maple code
%Y Cf. A000041, A001055.
%Y Cf. A066815, A066816, A066806.
%Y Cf. A001970, A050336, A063834, A065026, A066739, A281113, A284639, A318948, A318949.
%K easy,nonn
%O 0,3
%A _Naohiro Nomoto_, Jan 16 2002
%E Edited by _Dean Hickerson_, Jan 19 2002