login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p dividing 1 + the product of the primes less than p.
5

%I #24 Feb 26 2024 01:26:03

%S 2,3,19,1471,3001

%N Primes p dividing 1 + the product of the primes less than p.

%C No further terms up to prime(216816) = 2999999. Is the sequence finite? - _Klaus Brockhaus_, Jan 17 2002

%C From Lévai Gábor (gablevai(AT)vipmail.hu), Nov 23 2004: (Start)

%C Let p(1)=2, p(2)=3, p(3)=5, ... denote the primes and let E(n) = 1 + p(1) * p(2) * ... * p(n). For k >= 1, list the primes p such that p(n+k) | E(n). For k=1 we get this sequence, for k=2 we get A100465.

%C For k >= 3 the known results are as follows: if k = 3: no solutions for p < 80000000; if k = 4: 463, 2908123 and no others for p < 80000000; if k = 5: 61, 73 and no others for p < 80000000; if k = 6: 21687203 and no others for p < 80000000; if k = 7: 149, 43951591 and no others for p < 80000000; if k = 8: 31, 131 and no others for p < 80000000; if k = 9: 58691999 and no others for p < 80000000. (End)

%C No further terms up to 80000000. - Lévai Gábor (gablevai(AT)vipmail.hu), Nov 23 2004

%C a(6) > 179424673 = prime(10^7). - _Giovanni Resta_, Apr 13 2017

%C a(6) > 914799232 > prime(46727379). - _Max Z. Scialabba_, Feb 26 2024

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha102.htm">Factorization results for #Pn (Primorial) + 1</a>

%e 1 + Product of the primes < 19 = 1 + 2*3*5*7*11*13*17 = 510511 = 19*26869; so 19 is a term of the sequence.

%t p = 2; Do[q = Prime[n]; If[ IntegerQ[(p + 1)/q], Print[q]]; p = p*q, {n, 2, 86120} ]

%o (PARI) a066735(m) =local(k,p); k=1; forprime(p=2,m, if((k+1)%p==0,print1(p,",")); k=k*p)

%Y Cf. A002110, A002585, A100465, A081618.

%K nonn,more

%O 1,1

%A _Joseph L. Pe_, Jan 15 2002