login
Numbers such that the nonzero product of the digits of its 4th power is also a 4th power.
1

%I #21 Sep 20 2024 23:55:24

%S 1,118,144,211,427,739,1836,8958,19638,20528,21454,22359,24533,26022,

%T 27378,29648,33038,33204,33648,40226,40262,46416,47181,47198,49314,

%U 53133,55273,55792,59559,59754,60924,61292,61763,61933,66408,68302

%N Numbers such that the nonzero product of the digits of its 4th power is also a 4th power.

%H Harry J. Smith, <a href="/A066734/b066734.txt">Table of n, a(n) for n = 1..1000</a>

%e 118 is in the sequence because the 4th power of 118 is 193877776 and 1*9*3*8*7*7*7*7*6 = 3111696 = 42^4.

%t Do[a = Apply[Times, IntegerDigits[n^2]]; If[ a != 0 && IntegerQ[a^(1/2)], Print[n]], {n, 1, 10^4} ]

%t d4pQ[n_]:=Module[{t=Times@@IntegerDigits[n^4]},t!=0&&IntegerQ[Surd[t,4]]]; Select[Range[70000],d4pQ] (* _Harvey P. Dale_, Feb 20 2018 *)

%o (PARI) isok(k)={my(p=vecprod(digits(k^4))); p && ispower(p, 4)} \\ _Harry J. Smith_, Mar 20 2010

%Y Cf. A067071.

%K nonn,base

%O 1,2

%A _Robert G. Wilson v_, Jan 15 2002