login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066637 Total number of elements in all factorizations of n with all factors > 1. 7

%I #35 Apr 19 2021 17:11:09

%S 0,1,1,3,1,3,1,6,3,3,1,8,1,3,3,12,1,8,1,8,3,3,1,17,3,3,6,8,1,10,1,20,

%T 3,3,3,22,1,3,3,17,1,10,1,8,8,3,1,34,3,8,3,8,1,17,3,17,3,3,1,27,1,3,8,

%U 35,3,10,1,8,3,10,1,46,1,3,8,8,3,10,1,34,12,3,1,27,3,3,3,17,1,27,3,8,3,3,3

%N Total number of elements in all factorizations of n with all factors > 1.

%C From _Gus Wiseman_, Apr 18 2021: (Start)

%C Number of ways to choose a factor index or position in a factorization of n. The version selecting a factor value is A339564. For example, the factorizations of n = 2, 4, 8, 12, 16, 24, 30 with a selected position (in parentheses) are:

%C ((2)) ((4)) ((8)) ((12)) ((16)) ((24)) ((30))

%C ((2)*2) ((2)*4) ((2)*6) ((2)*8) ((3)*8) ((5)*6)

%C (2*(2)) (2*(4)) (2*(6)) (2*(8)) (3*(8)) (5*(6))

%C ((2)*2*2) ((3)*4) ((4)*4) ((4)*6) ((2)*15)

%C (2*(2)*2) (3*(4)) (4*(4)) (4*(6)) (2*(15))

%C (2*2*(2)) ((2)*2*3) ((2)*2*4) ((2)*12) ((3)*10)

%C (2*(2)*3) (2*(2)*4) (2*(12)) (3*(10))

%C (2*2*(3)) (2*2*(4)) ((2)*2*6) ((2)*3*5)

%C ((2)*2*2*2) (2*(2)*6) (2*(3)*5)

%C (2*(2)*2*2) (2*2*(6)) (2*3*(5))

%C (2*2*(2)*2) ((2)*3*4)

%C (2*2*2*(2)) (2*(3)*4)

%C (2*3*(4))

%C ((2)*2*2*3)

%C (2*(2)*2*3)

%C (2*2*(2)*3)

%C (2*2*2*(3))

%C (End)

%D Amarnath Murthy, Generalization of Partition function, Introducing Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

%D Amarnath Murthy, Length and extent of Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

%H Alois P. Heinz, <a href="/A066637/b066637.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from T. D. Noe)

%e a(12) = 8: there are 4 factorizations of 12: (12), (6*2), (4*3), (3*2*2) having 1, 2, 2, 3 elements respectively, a total of 8.

%p # Return a list of lists which are factorizations (product representations)

%p # of n. Within each sublist, the factors are sorted. A minimum factor in

%p # each element of sublists returned can be specified with 'mincomp'.

%p # If mincomp=2, the number of sublists contained in the list returned is A001055(n).

%p # Example:

%p # n=8 and mincomp=2 return [[2,2,2],[4,8],[8]]

%p listProdRep := proc(n,mincomp)

%p local dvs,resul,f,i,j,rli,tmp ;

%p resul := [] ;

%p # list returned is empty if n < mincomp

%p if n >= mincomp then

%p if n = 1 then

%p RETURN([1]) ;

%p else

%p # compute the divisors, and take each divisor

%p # as a head element (minimum element) of one of the

%p # sublists. Example: for n=8 use {1,2,4,8}, and consider

%p # (for mincomp=2) sublists [2,...], [4,...] and [8].

%p dvs := numtheory[divisors](n) ;

%p for i from 1 to nops(dvs) do

%p # select the head element 'f' from the divisors

%p f := op(i,dvs) ;

%p # if this is already the maximum divisor n

%p # itself, this head element is the last in

%p # the sublist

%p if f =n and f >= mincomp then

%p resul := [op(resul),[f]] ;

%p elif f >= mincomp then

%p # if this is not the maximum element

%p # n itself, produce all factorizations

%p # of the remaining factor recursively.

%p rli := procname(n/f,f) ;

%p # Prepend all the results produced

%p # from the recursion with the head

%p # element for the result.

%p for j from 1 to nops(rli) do

%p tmp := [f,op(op(j,rli))] ;

%p resul := [op(resul),tmp] ;

%p od ;

%p fi ;

%p od ;

%p fi ;

%p fi ;

%p resul ;

%p end:

%p A066637 := proc(n)

%p local f,d;

%p a := 0 ;

%p for d in listProdRep(n,2) do

%p a := a+nops(d) ;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Jul 11 2013

%p # second Maple program:

%p with(numtheory):

%p b:= proc(n, k) option remember; `if`(n>k, 0, [1$2])+

%p `if`(isprime(n), 0, (p-> p+[0, p[1]])(add(

%p `if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n})))

%p end:

%p a:= n-> `if`(n<2, 0, b(n$2)[2]):

%p seq(a(n), n=1..120); # _Alois P. Heinz_, Feb 12 2019

%t g[1, r_] := g[1, r]={1, 0}; g[n_, r_] := g[n, r]=Module[{ds, i, val}, ds=Select[Divisors[n], 1<#<=r&]; val={0, 0}+Sum[g[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]; val+{0, val[[1]]}]; a[n_] := g[n, n][[2]]; a/@Range[95] (* g[n, r] = {c, f}, where c is the number of factorizations of n with factors <= r and f is the total number of factors in them. - _Dean Hickerson_, Oct 28 2002 *)

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];Table[Sum[Length[fac],{fac,facs[n]}],{n,50}] (* _Gus Wiseman_, Apr 18 2021 *)

%Y The version for normal multisets is A001787.

%Y The version for compositions is A001792.

%Y The version for partitions is A006128 (strict: A015723).

%Y Choosing a value instead of position gives A339564.

%Y A000070 counts partitions with a selected part.

%Y A001055 counts factorizations.

%Y A002033 and A074206 count ordered factorizations.

%Y A067824 counts strict chains of divisors starting with n.

%Y A336875 counts compositions with a selected part.

%Y Cf. A000005, A000041, A045778, A050336, A066186, A162247, A264401, A281116, A292504, A292886, A322794.

%K nonn

%O 1,4

%A _Amarnath Murthy_, Dec 28 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 23 22:08 EDT 2024. Contains 375396 sequences. (Running on oeis4.)