%I #23 May 22 2013 01:50:19
%S 5,16,42,138,357,1233,3278,12589,35789,159613,499900,2677865,9421400,
%T 62226044
%N Number of triangulations of the cyclic polytope C(n, n-5).
%H C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, <a href="http://personales.unican.es/santosf/Articulos/">Fiber polytopes for the projections between cyclic polytopes</a>, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19 - 47.
%H M. Azaola and F. Santos, <a href="http://personales.unican.es/santosf/Articulos/">The number of triangulations of the cyclic polytope C(n,n-4)</a>, Discrete Comput. Geom., 27 (2002), 29-48.
%H J. Rambau, <a href="http://www.rambau.wm.uni-bayreuth.de/TOPCOM">TOPCOM</a>.
%H J. Rambau, TOPCOM: Triangulations of Point Configurations and Oriented Matroids, Mathematical Software - ICMS 2002 (Cohen, Arjeh M. and Gao, Xiao-Shan and Takayama, Nobuki, eds.), World Scientific (2002), pp. 330-340.
%H J. Rambau and F. Santos, <a href="http://dx.doi.org/10.1006/eujc.1999.0321">The Baues problem for cyclic polytopes I</a>, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 65-83.
%o TOPCOM's command "cyclic 17 12 | points2ntriangs -v" yields, e.g., the number of triangulations of C(17,12).
%Y Cf. A066342, A028441.
%K nonn
%O 5,1
%A _N. J. A. Sloane_, Jan 09 2002
%E New term for C(17,12) (computed by TOPCOM) added by _Jörg Rambau_, Jul 26 2011
%E New term for C(18,13) (computed by TOPCOM) added by _Jörg Rambau_, Aug 01 2011