Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 29 2023 17:28:38
%S 1,3,22,223,283,355,22,421,389,1065,365,1508,2130,3079,1065,69203,
%T 51872,127539,83282,128604,152628,252271,191963,295294,130252,459590,
%U 717615,1401314,2840,7189717,1258370,10269235,2130,11671711,11519862,19177306,17002972,21316045
%N Pairs (x, y), x < y, of f-amicable numbers where f(k) = floor(|k*sin(k)|) sorted by increasing y, then increasing x; f-amicable numbers are defined in A066511.
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a066/A066573.java">Java program</a> (github)
%H J. Pe, <a href="http://www.numeratus.net/fperfect/fperfect.html">On a Generalization of Perfect Numbers</a>, J. Rec. Math., 31(3) (2002-2003), 168-172.
%e Proper divisors of 22 are {1,2,11}; f applied to these = {0, 1, 10}, which sum to 11 = f(223). Proper divisors of 223 are {1}; f applied to these = {0}, which sum to 0 = f(22). Hence (22,223) is an f-amicable pair.
%t f[x_] := Floor[Abs[x*Sin[x]]]; d[x_] := Apply[ Plus, Map[ f, Divisors[ x] ] ] - f[ x]; m = Table[{x, y}, {x, 1, 1000}, {y, 1, 1000}]; Do[a = m[[i, j]]; If[ (a[[1]] < a[[2]]) && (f[a[[1]]] == d[a[[2]]]) && (f[a[[2]]] == d[a[[1]]]), Print[{i, j}]], {j, 1, 1000}, {i, 1, 1000}]
%Y Cf. A066511, A066218.
%K nonn
%O 1,2
%A _Joseph L. Pe_, Jan 07 2002
%E More terms and entry revised by _Sean A. Irvine_, Oct 29 2023