login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The first of two consecutive primes with equal digital sums.
11

%I #48 Dec 05 2024 14:45:46

%S 523,1069,1259,1759,1913,2503,3803,4159,4373,4423,4463,4603,4703,4733,

%T 5059,5209,6229,6529,6619,7159,7433,7459,8191,9109,9749,9949,10691,

%U 10753,12619,12763,12923,13763,14033,14107,14303,14369,15859,15973,16529,16673,16903,17239

%N The first of two consecutive primes with equal digital sums.

%C The difference between the two primes of the pair is a multiple of 18. - _Antonio Roldán_, Mar 13 2012

%H Harry J. Smith, <a href="/A066540/b066540.txt">Table of n, a(n) for n = 1..1000</a>

%H G. L. Honaker, Jr. and C. Caldwell, <a href="https://t5k.org/curios/page.php?short=523">Prime Curios!</a>

%e a(1) = 523 because both it and the next prime, 541, have a digital sum of 10.

%t Prime[ Select[Range[2000], Apply[ Plus, IntegerDigits[ Prime[ # ]]] == Apply[ Plus, IntegerDigits[ Prime[ # + 1]]] & ]]

%o (PARI) upto(limit)={my(d=2, L=List()); forprime(p=3, nextprime(limit+1), my(s=sumdigits(p)); if(s==d, listput(L, precprime(p-1))); d=s); Vec(L) } \\ _Harry J. Smith_, Feb 22 2010

%o (PARI) is_A066540(p)={my(n=nextprime(p+1)); (n-p)%18==0 & isprime(p) & A007953(p)==A007953(n)} \\ _M. F. Hasler_, Oct 13 2012

%o (Python)

%o from sympy import nextprime

%o from itertools import islice

%o def agen(): # generator of terms

%o p, hp, q, hq = 2, 2, 3, 3

%o while True:

%o if hp == hq: yield p

%o p, q = q, nextprime(q)

%o hp, hq = hq, sum(map(int, str(q)))

%o print(list(islice(agen(), 42))) # _Michael S. Branicky_, Feb 19 2024

%Y Subsequence of A117838. A069567 is a subsequence.

%Y Cf. A007513, A007953, A209396, A210629.

%K base,easy,nonn

%O 1,1

%A _Jason Earls_, Jan 06 2002