login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066510
Conjectured list of positive numbers which are not of the form r^i-s^j, where r,s,i,j are integers with i>1, j>1.
2
6, 14, 34, 42, 58, 62, 66, 70, 78, 86, 90, 102, 110, 114, 130, 158, 178, 182, 202, 210, 230, 238, 254, 258, 266, 274, 278, 302, 306, 310, 314, 322, 326, 330, 358, 374, 378, 390, 394, 398, 402, 410, 418, 422, 426, 430, 434, 438, 446, 450, 454
OFFSET
1,1
COMMENTS
This is a famous hard problem and the terms shown are only conjectured values.
The terms shown are not the difference of two powers below 10^19. - Don Reble
One can immediately represent the odd numbers and the multiples of four as differences of two squares. - Don Reble
The terms shown are not the difference of two powers below 10^27. - Mauro Fiorentini, Jan 08 2020
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sections D9 and B19.
EXAMPLE
Examples showing that certain numbers are not in the sequence: 10 = 13^3-3^7, 22 = 7^2 - 3^3, 29 = 15^2 - 14^2, 31 = 2^5 - 1, 52 = 14^2 - 12^2, 54 = 3^4 - 3^3, 60 = 2^6 - 2^2, 68 = 10^2 - 2^5, 72 = 3^4 - 3^2, 76 = 5^3 - 7^2, 84 = 10^2 - 2^4, ...
50 = 7^2 - -1^3, 82 = 9^2 - -1^3, 226 = 15^2 - -1^3, 246 = 11^2 - -5^3, 290 = 17^2 - -1^3, ... [Typos corrected by Gerry Myerson, May 14 2008]
CROSSREFS
Sequence in context: A340735 A142875 A074981 * A279730 A269717 A271097
KEYWORD
nonn,hard
AUTHOR
Don Reble, Oct 12 2002
STATUS
approved