Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jan 13 2022 09:54:16
%S 1,0,1,0,2,0,0,2,0,0,0,2,1,0,0,0,2,2,0,0,0,0,2,4,0,0,0,0,0,2,6,0,0,0,
%T 0,0,0,2,8,0,0,0,0,0,0,0,2,10,1,0,0,0,0,0,0,0,2,12,2,0,0,0,0,0,0,0,0,
%U 2,14,4,0,0,0,0,0,0,0,0,0,2,16,8,0,0,0,0,0,0,0,0,0
%N Triangle T(n,k) giving number of basis partitions of n with a Durfee square of order k (n >= 0, 0 <= k <= n).
%H Seiichi Manyama, <a href="/A066448/b066448.txt">Rows n = 0..139, flattened</a>
%H J. M. Nolan, C. D. Savage and H. S. Wilf, <a href="https://doi.org/10.1016/s0012-365x(97)00101-5">Basis partitions</a>, Discrete Math. 179 (1998), 277-283.
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 2, 0;
%e 0, 2, 0, 0;
%e 0, 2, 1, 0, 0;
%e 0, 2, 2, 0, 0, 0;
%e 0, 2, 4, 0, 0, 0, 0;
%e 0, 2, 6, 0, 0, 0, 0, 0;
%e 0, 2, 8, 0, 0, 0, 0, 0, 0;
%e ...
%p T := proc(n,d); option remember; if n=0 and d=0 then RETURN(1) elif n<=0 or d<=0 then RETURN(0) else RETURN(T(n-d,d)+T(n-2*d+1,d-1)+T(n-3*d+1,d-1)) fi:
%o (PARI) T(n,k)=if(k<0||k>n,0,if(k==0,n==0,T(n-k,k)+T(n-2*k+1,k-1)+T(n-3*k+1,k-1))) /* _Michael Somos_, Mar 10 2004 */
%Y Row sums give A066447.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_, Dec 29 2001