login
From expansion of Belyi function for icosahedron.
4

%I #7 Sep 08 2019 03:27:52

%S 1,-739,196874,-22478125,1086128125,-35307387500,913727546875,

%T -20389341653125,410010534950000,-7633186177665625,133911227595521875,

%U -2240979684247156250,36090410657726350000,-563019001047724506250,8550765894655300606250

%N From expansion of Belyi function for icosahedron.

%D A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.

%H N. Magot and A. Zvonkin, <a href="https://doi.org/10.1016/S0012-365X(99)00266-6">Belyi functions for Archimedian solids</a>, Discrete Math., 217 (2000), 249-271.

%F The Belyi function is 1/Belyi function for dodecahedron.

%F G.f.: (1-228x+494x^2+228x^3+x^4)^3/(1+11x-x^2)^5. - _Michael Somos_, Dec 13 2002

%o (PARI) a(n)=polcoeff((1+228*(x^3-x)+494*x^2+x^4)^3/(1+11*x-x^2)^5+x*O(x^n),n)

%Y Cf. A066402, A066403, A066405. a(n)=(-1)^n*A078906(n-1).

%K sign

%O 0,2

%A _N. J. A. Sloane_, Dec 25 2001