Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 13 2018 19:19:24
%S 1,2,10,10,46,26,106,50,190,82,298,122,430,170,586,226,766,290,970,
%T 362,1198,442,1450,530,1726,626,2026,730,2350,842,2698,962,3070,1090,
%U 3466,1226,3886,1370,4330,1522,4798,1682,5290,1850,5806,2026,6346,2210,6910
%N Coordination sequence for ReO_3 net with respect to oxygen atom O_1.
%H Colin Barker, <a href="/A066394/b066394.txt">Table of n, a(n) for n = 0..1000</a>
%H Jean-Guillaume Eon, <a href="https://doi.org/10.1107/S0108767301016609">Algebraic determination of generating functions for coordination sequences in crystal structures</a>, Acta Cryst. A58 (2002), 47-53.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).
%F G.f.: (1 + 2*x + 7*x^2 + 4*x^3 + 19*x^4 + 2*x^5 - 3*x^6) / (1 - x^2)^3.
%F From _Colin Barker_, Feb 13 2018: (Start)
%F a(n) = 3*n^2 - 2 for n>0 and even.
%F a(n) = n^2 + 1 for n odd.
%F a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
%F (End)
%o (PARI) Vec((1 + 2*x + 7*x^2 + 4*x^3 + 19*x^4 + 2*x^5 - 3*x^6) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ _Colin Barker_, Feb 13 2018
%Y Cf. A066714.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Dec 24 2001