login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066310
Numbers k such that k < (product of digits of k) * (sum of digits of k).
4
2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95
OFFSET
1,1
LINKS
EXAMPLE
14 < (1*4)*(1+4) = 20, so 14 is a term of this sequence.
For n=199, (1+9+9)*1*9*9 = 1539 > 199, so 199 is here.
MATHEMATICA
asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] sz[x_] := asu[x]*apro[x] Do[s=sz[n]; If[Greater[s, n], Print[n]], {n, 1, 200}]
PROG
(ARIBAS): function a066311(a, b: integer); var n, k, j, p, d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; p := p*d; end; if n < p*k then write(n, ", "); end; end; end; a066311(0, 120).
(PARI) isok(m) = my(d=digits(m)); m < vecprod(d)*vecsum(d); \\ Michel Marcus, Mar 23 2020
KEYWORD
base,nonn,fini
AUTHOR
Labos Elemer and Klaus Brockhaus, Dec 13 2001
STATUS
approved