login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonprimes whose sum of digits is equal to its product of digits.
6

%I #20 Dec 04 2024 23:05:08

%S 1,4,6,8,9,22,123,132,213,231,312,321,1124,1142,1214,1241,1412,1421,

%T 2114,4112,4121,11125,11133,11152,11215,11222,11313,11331,11512,11521,

%U 12115,12122,12151,12212,12221,13113,13131,13311,15112,15211,21115

%N Nonprimes whose sum of digits is equal to its product of digits.

%H Chai Wah Wu, <a href="/A066307/b066307.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..516 from Harry J. Smith)

%e 321 = 3*107, 3 + 2 + 1 = 6 = 3*2*1.

%t sdpdQ[n_]:=Module[{idn=IntegerDigits[n]},Total[idn]==Times@@idn]; Module[ {upto=25000, cs},cs=Complement[Range[upto],Prime[Range[PrimePi[upto]]]];Select[cs,sdpdQ]] (* _Harvey P. Dale_, Oct 14 2014 *)

%o (PARI) isok(k) = {if(isprime(k), 0, my(d=digits(k)); vecprod(d) == vecsum(d))} \\ _Harry J. Smith_, Feb 09 2010

%Y Composites and 1 from A034710.

%Y Cf. A034710, A066306.

%K base,nonn

%O 1,2

%A _Labos Elemer_, Dec 13 2001