Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 12 2017 03:44:36
%S 2,3,5,7,17,23,29,31,41,43,67,89,97,131,139,157,281,311,313,331,353,
%T 379,401,431,449,499,569,571,607,631,683,733,743,751,787,829,881,883,
%U 947,967,983,1033,1091,1117,1123,1151,1301,1303,1327,1373,1543,1559
%N Primes p(m) such that a prime number q exists so that p(m)-q = c(m), the m-th composite number.
%C Number of terms < 10^k: 4, 13, 41, 177, 1119, 6963, 48647, 359109, 2766164, ..., . - _Robert G. Wilson v_, Dec 11 2017
%H Robert G. Wilson v, <a href="/A066277/b066277.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = prime(A060253(n)) or A000040(A060253(n)). - _Michel Marcus_, Dec 11 2017
%e p(25) = A000040(25) = 97; 97 - 61 = A002808(25) = c(25) = 38 and 61 is prime.
%t Composite[n_Integer] := FixedPoint[n + PrimePi@# +1 &, n + PrimePi@n +1]; fQ[n_] := PrimeQ[Prime@n - Composite@n]; Prime@ Select[ Range@250, fQ] (* _Robert G. Wilson v_, Dec 11 2017 *)
%Y Cf. A000040, A002808, A038529, A060253.
%K nonn
%O 1,1
%A _Labos Elemer_, Dec 10 2001