|
|
A066231
|
|
Numbers n such that phi(n) = phi(n-1) - phi(n-2).
|
|
3
|
|
|
6, 8, 26, 78, 218, 306, 3666, 4646, 5066, 8816, 12206, 12546, 19878, 20436, 24236, 29546, 37736, 47996, 60116, 72086, 73026, 77046, 87476, 121146, 126056, 129246, 149756, 190268, 234636, 247856, 273296, 275724, 419366, 531236, 553476, 621726
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Question: Are all terms of this sequence even? (Compare A065557, whose terms could be all odd and squarefree.)
|
|
LINKS
|
|
|
EXAMPLE
|
phi(8) = 4 = 6-2 = phi(7) - phi(6).
|
|
MATHEMATICA
|
Flatten[Position[Partition[EulerPhi[Range[630000]], 3, 1], _?(#[[3]] == #[[2]]- #[[1]]&), 1, Heads->False]]+2 (* Harvey P. Dale, Aug 19 2018 *)
|
|
PROG
|
(PARI) n=0; for (m=3, 10^9, if (eulerphi(m) == eulerphi(m - 1) - eulerphi(m - 2), write("b066231.txt", n++, " ", m); if (n==117, return)) ) \\ Harry J. Smith, Feb 06 2010
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|