Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 02 2020 21:28:20
%S 1,9,25,84,185
%N Covering numbers C(n,9,8).
%C C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets.
%D CRC Handbook of Combinatorial Designs, 1996, p. 263.
%D W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.
%H D. Applegate, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205303">On asymmetric coverings and covering numbers</a>, J. Comb. Des. 11 (2003), 218-228.
%H D. Gordon, <a href="http://www.dmgordon.org/cover">La Jolla Repository of Coverings</a>
%H K. J. Nurmela and Patric R. J. Östergård, <a href="http://www.tcs.hut.fi/old/papers/tp1.ps.Z">New coverings of t-sets with (t+1)-sets</a>, J. Combinat. Designs, 7 (1999), 217-226.
%H K. J. Nurmela and Patric R. J. Östergård, <a href="http://www.tcs.hut.fi/old/papers/table3.html">New coverings of t-sets with (t+1)-sets (appendix)</a>, J. Combinat. Designs, 7 (1999), 217-226.
%H <a href="/index/Cor#covnum">Index entries for covering numbers</a>
%Y A column of A066010.
%K nonn,hard
%O 9,2
%A _N. J. A. Sloane_