login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = least number m > 1 such that sigma_n(m) = k*m for some k.
11

%I #29 Dec 18 2018 17:02:48

%S 6,10,6,34,6,10,6,84,6,10,6,34,6,10,6,84,6,10,6,34,6,10,6,194,6,10,6,

%T 34,6,10,6,84,6,10,6,34,6,10,6,84,6,10,6,34,6,10,6,228,6,10,6,34,6,10,

%U 6,84,6,10,6,34,6,10,6,84,6,10,6,34,6,10,6,194,6,10,6

%N a(n) = least number m > 1 such that sigma_n(m) = k*m for some k.

%C a(n) <= 2p, where p = A002586(n) is the smallest prime factor of (1 + 2^n). (Proof. Since sigma_n(2p) = (1 + 2^n)(1 + p^n) and p is odd, 2p divides sigma_n(2p).) - _Jonathan Sondow_, Nov 23 2012

%H T. D. Noe, <a href="/A066135/b066135.txt">Table of n, a(n) for n = 1..10000</a>

%F Sum{d^n} = ka(n), d runs over the divisors of a(n), where k is an integer and a(n) is the smallest suitable number.

%t Table[m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m, {n, 100}] (* _T. D. Noe_, Nov 23 2012 *)

%Y Cf. A000203, A001157, A001158, A001159, A002586, A007691, A046762-A046764, A055709-A055717.

%Y Cf. A218860, A218861 (unique values and where they first occur).

%K nonn

%O 1,1

%A _Labos Elemer_, Dec 06 2001

%E Definition and formulas corrected by _Jonathan Sondow_, Nov 23 2012