login
A066094
Type D Eulerian triangle.
11
1, 1, 1, 1, 2, 1, 1, 11, 11, 1, 1, 44, 102, 44, 1, 1, 157, 802, 802, 157, 1, 1, 530, 5551, 10876, 5551, 530, 1, 1, 1731, 35121, 124427, 124427, 35121, 1731, 1, 1, 5528, 208732, 1265704, 2201030, 1265704, 208732, 5528, 1
OFFSET
0,5
COMMENTS
Let n >= 2 and write the polynomial D(n,0)+D(n,1)*x+...+D(n,n)*x^n as a polynomial in y := x-1. Then the coefficient of y^r is the number of cells of dimension n-r in the cellular decomposition of a Euclidean space containing a root system of type D_n. If n >= 2 then the corresponding row sum is 2^(n-1)*n!, while Sum_{k=0..n} 2^k*D(n,k) is given by sequence A080254. [Row sum formula corrected by Joshua Swanson, Jul 12 2022]
The entries in row n (for n >= 2) are the components of the h-vector of the permutohedra of type D_n. See A145902 for the corresponding array of f-vectors for type D permutohedra. [Peter Bala, Oct 29 2008]
REFERENCES
K. S. Brown, Buildings, Springer-Verlag, 1988
T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 11.
LINKS
Jose Bastidas, Table of n, a(n) for n = 0..1274 (First 50 rows)
Anna Borowiec and Wojciech Mlotkowski, New Eulerian numbers of type D, arXiv:1509.03758 [math.CO], 2015.
C. Chow, On the Eulerian polynomials of type D, arXiv:math/0201140 [math.CO], 2002.
S.-M. Ma, Polynomials with only real zeros and the Eulerian polynomials of type D, arXiv preprint arXiv:1205.6242 [math.CO], 2012. - From N. J. A. Sloane, Oct 23 2012
FORMULA
Let D(n, k) denote the (k+1)st entry in the (n+1)st row and let A(n, k), B(n, k) be triangles A008292 (The Eulerian triangle), A060187 respectively. Then D(n, k) = B(n, k)-2^(n-1)*n*A(n-2, k-1).
Chow gives complicated recurrences and generating functions.
E.g.f.: [(1-x)*exp(z*(1-x)) - z*x*(1-x)*exp(2*z*(1-x))]/(1 - x*exp(2*z*(1-x))) = 1 + x*z + (1 + 2*x + x^2)*z^2/2! + (1 + 11*x + 11*x^2 + x^3)*z^3/3! + ... . [Peter Bala, Oct 29 2008]
EXAMPLE
From Peter Bala, Oct 29 2008: (Start)
The triangle begins
n\k|..0....1....2....3....4....5
================================
0..|..1
1..|..1....1
2..|..1....2....1
3..|..1...11...11....1
4..|..1...44..102...44....1
5..|..1..157..802..802..157....1
...
(End)
CROSSREFS
Cf. A145902. [Peter Bala, Oct 29 2008]
Sequence in context: A158202 A176307 A197648 * A160625 A324188 A297762
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Boddington, Mar 05 2003
STATUS
approved