login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k divided by ((sum of digits of k) multiplied by (product of digits of k)) is prime.
2

%I #37 Dec 14 2024 20:37:58

%S 12,111,216,432,41112,81216,186624,248832,311472,316224,341712,422144,

%T 714112,1131111,1131732,1191915,1211328,1292112,1418112,2192832,

%U 3112128,4331232,11127424,11311272,18122112,21111192,26726112,28422144,34338816

%N Numbers k such that k divided by ((sum of digits of k) multiplied by (product of digits of k)) is prime.

%H David A. Corneth, <a href="/A066042/b066042.txt">Table of n, a(n) for n = 1..1744</a> (first 469 terms from Harry J. Smith and Chai Wah Wu)

%H David A. Corneth, <a href="/A066042/a066042.gp.txt">a(n) = [product of digits of a(n)] * [sum of digits of a(n)] * [some prime]</a>

%F Sum digits of n; take product of digits of n; multiply sum by product and divide into n. If prime, add to sequence.

%e a(2) = 111 because 1+1+1 = 3 and 1*1*1 = 1 and 3*1 = 3 and 111/3 = 37 and 37 is prime. [corrected by _Harry J. Smith_, Nov 08 2009]

%t ndspQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&PrimeQ[n/(Total[ idn]Times@@idn)]]; Select[Range[35*10^6],ndspQ] (* _Harvey P. Dale_, Feb 09 2015 *)

%o (PARI) isok(k) = { my(d=digits(k), q=vecsum(d)*vecprod(d)); q!= 0 && k%q==0 && isprime(k/q) }

%o { for(k=0, 10^7, if(isok(k), print1(k, ", "))) } \\ _Harry J. Smith_, Nov 08 2009

%Y Cf. A038369, A049102, A066146.

%K easy,nonn,base

%O 1,1

%A _Enoch Haga_, Dec 13 2001

%E Checked to over 10^8 (110508539) without finding another example.

%E Offset 1 from _Harry J. Smith_, Nov 08 2009

%E Should have found 34338816, 37121112, and 41174112 < 10^8. Term a(29) from _Harry J. Smith_, Nov 08 2009