login
A066019
Triangle of covering numbers T(n,k) = C(n,k,k-2), n >= 3, 3 <= k <= n.
0
1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 3, 5, 5, 5, 1, 3, 6, 8, 7, 6, 1, 3, 8, 12, 12, 9, 7, 1, 4, 9, 17, 20, 20, 12, 8, 1, 4, 11, 20, 32, 34, 29, 15, 9, 1, 4, 12, 29
OFFSET
3,2
COMMENTS
C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets.
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 263.
W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.
Kari J. Nurmela and Patric R. J. Östergård, Covering t-sets with (t+2)-sets. Proceedings of the Conference on Optimal Discrete Structures and Algorithms-ODSA '97 (Rostock).
LINKS
Kari J. Nurmela and Patric R. J. Östergård, Covering t-sets with (t+2)-sets, Discrete Appl. Math. 95 (1999), no. 1-3, 425-437.
EXAMPLE
Triangle begins:
1;
2 1;
2 3 1;
2 3 4 1;
3 5 5 5 1;
...
PROG
(Sage)
from sage.combinat.designs.covering_design import best_known_covering_design_www
def T(n, k):
if k==3: return ceil(n/3)
if k==n: return 1
C = best_known_covering_design_www(n, k, k-2)
assert C.size() == C.low_bd()
return C.size()
# Max Alekseyev, Feb 14 2025
CROSSREFS
Sequence in context: A183534 A066040 A318806 * A051237 A064379 A278961
KEYWORD
nonn,tabl,nice,more,changed
AUTHOR
N. J. A. Sloane, Dec 30 2001
EXTENSIONS
Row n=11 and first 3 terms of row n=12 added by Max Alekseyev, Feb 14 2025
STATUS
approved