login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of digits of 5^n.
23

%I #27 Dec 04 2024 15:40:04

%S 1,5,7,8,13,11,19,23,25,26,40,38,28,23,34,44,58,56,64,59,61,62,67,74,

%T 82,77,79,89,85,83,91,104,106,89,103,92,109,104,124,134,130,137,145,

%U 149,151,116,112,128,145,158,151,152,130,119,127,167,196

%N Sum of digits of 5^n.

%C We can expect and conjecture that a(n) ~ 4.5*log_10(5)*n, but for n ~ 10^3..10^4 there are still fluctuations of +- 1%, e.g., a(10^3)/log_10(5) ~ 4538, a(10^4)/log_10(5) ~ 44518. Modulo 9, the sequence is periodic with period (1, 5, 7, 8, 4, 2) of length 6. No term is divisible by 3, a(n) = (-1)^n (mod 3). - _M. F. Hasler_, May 18 2017

%H Harry J. Smith, <a href="/A066001/b066001.txt">Table of n, a(n) for n = 0..1000</a>

%t Table[ Total@ IntegerDigits[5^n], {n, 0, 60}] (* _Robert G. Wilson v_ Oct 25 2006 *).

%t Table[Total[IntegerDigits[5^n]], {n, 0, 60}] (* _Vincenzo Librandi_, Oct 08 2013 *)

%o (PARI) A066001=a(n)=sumdigits(5^n); \\ _Michel Marcus_, Sep 04 2014

%Y Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), this sequence (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).

%K nonn,base,changed

%O 0,2

%A _N. J. A. Sloane_, Dec 11 2001