login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of endofunctions on [n] with a 4-cycle a->b->c->d->a and for any x in [n], some iterate f^k(x) = a.
3

%I #13 Dec 04 2015 11:33:04

%S 6,120,2160,41160,860160,19840464,504000000,14030763120,425681879040,

%T 13997939172360,496360987938816,18891066796875000,768426686420090880,

%U 33279382190563948320,1529238539734890577920,74326797938267012471904

%N a(n) = number of endofunctions on [n] with a 4-cycle a->b->c->d->a and for any x in [n], some iterate f^k(x) = a.

%H Alois P. Heinz, <a href="/A065888/b065888.txt">Table of n, a(n) for n = 4..150</a>

%F E.g.f.: T^4/4 where T = T(x) is Euler's tree function (see A000169).

%F a(n) = (n-1)*(n-2)*(n-3)*n^(n-4). - _Vaclav Kotesovec_, Oct 05 2013

%e a(4) = 6 : 3 [choices of 1's opposite in cycle] * 2 [choices of 1's image]

%t Rest[Rest[Rest[Rest[CoefficientList[Series[(LambertW[-x])^4/4, {x, 0, 20}], x]* Range[0, 20]!]]]] (* _Vaclav Kotesovec_, Oct 05 2013 *)

%t Table[(n-1)(n-2)(n-3)n^(n-4),{n,4,20}] (* _Harvey P. Dale_, Dec 04 2015 *)

%Y Cf. A000169 (1-cycle), A053506 (2-cycle), A065513 (3-cycle), A065889 (= A065888/2: underlying simple graphs).

%K nonn

%O 4,1

%A _Len Smiley_, Nov 27 2001