login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n-th prime - n-th semiprime.
2

%I #22 Apr 30 2015 12:17:36

%S -2,-3,-4,-3,-3,-2,-4,-3,-2,3,-2,3,6,5,8,7,10,10,12,14,15,17,18,20,23,

%T 24,21,22,23,26,36,38,43,44,43,40,42,45,48,52,57,58,62,60,63,58,69,80,

%U 82,83,78,81,82,90,91,94,92,93,94,96,96,99,106,109,110,112,125,128,134,135,138,142,149,154,158,157,154,160,154,160

%N n-th prime - n-th semiprime.

%H Harry J. Smith, <a href="/A065870/b065870.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A000040(n) - A001358(n). - _Zak Seidov_, Apr 29 2015

%e Prime_1 - semiprime_1 = 2 - 4 = -2, prime_2 - semiprime_2 = 3 - 6 = -3, prime_3 - semiprime_3 = 5 - 9 = -4, etc.

%t nn=250;Module[{pr=Prime[Range[nn]],sp=Select[Range[nn],PrimeOmega[ #]==2&],len}, len=Min[nn,Length[sp]];#[[1]]-#[[2]]&/@ Thread[ {Take[ pr,len],Take[sp,len]}]](* _Harvey P. Dale_, Aug 14 2013 *)

%o (PARI) m=0; for (n=4, 250, if (bigomega(n) == 2, m = m + 1; print1(prime(m) - n,",")))

%o (PARI) n=m=0; for (k=1, 10^9, if (bigomega(k) != 2, next); m = m + 1; write("b065870.txt", n++, " ", prime(m) - k); if (n==1000, return) ) \\ _Harry J. Smith_, Nov 02 2009

%Y Cf. A000040, A001358, A038529 (n-th prime - n-th composite).

%K easy,sign

%O 1,1

%A Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 07 2001

%E More terms from _Rick L. Shepherd_, Mar 09 2002