login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime q such that (p^q-1)/(p-1) is a prime, where p = prime(n).
6

%I #8 Jan 18 2017 20:20:11

%S 2,3,3,5,17,5,3,19,5,5,7,13,3,5,127,11,3,7,19,3,5,5,5,3,17,3,19,17,17,

%T 23,5,3,11,163,7,13,17,7,3,3,19,17,17,5,31,577,41,239,5,11,113,5,17,7,

%U 23,5

%N Smallest prime q such that (p^q-1)/(p-1) is a prime, where p = prime(n).

%C a(n) = 2*A065813(n) + 1, n > 1.

%H Andy Steward, <a href="http://www.users.globalnet.co.uk/~aads/titans.html">Titanic Prime Generalized Repunits</a>

%t Do[p = Prime[n]; k = 1; While[ !PrimeQ[ (p^Prime[k] - 1)/(p - 1)], k++ ]; Print[ Prime[k]], {n, 1, 56} ]

%o (PARI) { allocatemem(932245000); for (n=1, 100, p=prime(n); q=2; while (!isprime((p^q - 1)/(p - 1)), q=nextprime(q + 1)); write("b065854.txt", n, " ", q) ) } \\ _Harry J. Smith_, Nov 01 2009

%Y Cf. A084740 (least k such that (n^k-1)/(n-1) is prime).

%K hard,nonn

%O 1,1

%A _Vladeta Jovovic_, Nov 26 2001