Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 25 2022 04:26:14
%S 1,2,1,3,1,2,1,4,2,2,1,3,1,2,1,5,1,4,1,3,1,2,1,4,2,2,2,3,1,2,1,6,1,2,
%T 1,6,1,2,1,4,1,2,1,3,2,2,1,5,2,4,1,3,1,4,1,4,1,2,1,3,1,2,2,7,1,2,1,3,
%U 1,2,1,8,1,2,2,3,1,2,1,5,3,2,1,3,1,2,1,4,1,4,1,3,1,2,1,6,1,4,2,6,1,2,1,4,1
%N Number of squares or twice squares dividing n.
%H Carl R. White, <a href="/A065704/b065704.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = (1/2)*Sum_{ d divides n } (1-(-1)^sigma(d)).
%F Multiplicative with a(2^e) = e+1 and a(p^e) = floor(e/2)+1 for an odd prime p.
%F a(n) = A005361(2*n) for n>0 (conjectured). - _Werner Schulte_, Jan 15 2018 [This is true only for numbers whose odd part (A000265) is cubefree (A004709). Therefore, the least counterexample is n=3^3=27: a(27) = 2 while A005361(2*27) = 3. - _Amiram Eldar_, Sep 25 2022]
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/4 (A091476). - _Amiram Eldar_, Sep 25 2022
%e divisors(36) = {1, 2, 3, 4, 6, 9, 12, 18, 36}, thus a(36) = #{1, 2, 4, 9, 18, 36}=6. a(36) = 1/2*(tau(36)-((-1)^sigma(1)+(-1)^sigma(2)+(-1)^sigma(3)+(-1)^sigma(4)+(-1)^sigma(6)+(-1)^sigma(9)+(-1)^sigma(12)+(-1)^sigma(18)+(-1)^sigma(36))) = 1/2*(9-(-3)) = 6. a(36) = a(2^2*3^2) = a(2^2)*a(3^2) = (2+1)*(1+1) = 6.
%t f[n_] := Total[1 - (-1)^DivisorSigma[1, Divisors@n]]/2; Array[f, 105] (* _Robert G. Wilson v_, Jan 02 2013 *)
%t f[p_, e_] := If[p == 2, e+1, Floor[e/2] + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 25 2022 *)
%o (PARI) a(n) = {my(e = valuation(n, 2), o = n>>e, f = factor(o)); (e+1)*prod(i=1 , #f~, floor(f[i,2]/2)+1)}; \\ _Amiram Eldar_, Sep 25 2022
%Y Cf. A000203, A028982, A046951, A091476.
%Y Cf. A000265, A004709.
%K mult,nonn
%O 1,2
%A _Vladeta Jovovic_, Dec 04 2001
%E More terms from _David Wasserman_, Sep 09 2002