login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimum value t such that all quadruples of Diffy_length >= n have a maximal value >= t.
5

%I #16 Jun 13 2015 00:50:30

%S 0,1,1,1,1,3,3,4,9,11,13,31,37,44,105,125,149,355,423,504,1201,1431,

%T 1705,4063,4841,5768,13745,16377,19513,46499,55403,66012,157305,

%U 187427,223317,532159,634061,755476,1800281,2145013,2555757,6090307,7256527

%N Minimum value t such that all quadruples of Diffy_length >= n have a maximal value >= t.

%C Another version of A045794, which has further information including a formula.

%C For quadruples of nonnegative integers a, b, c, d we let diffy([a, b, c, d]) := [|a-b|, |b-c|, |c-d|, |d-a|] (i.e. the quadruple of absolute differences of neighboring values, cyclically speaking) and Diffy_length([a, b, c, d]) := min { n in N | diffy^n([a, b, c, d]) = [0, 0, 0, 0] } (i.e. the minimum number of diffy iterations needed to convert [a, b, c, d] into [0, 0, 0, 0]).

%C The "inverse" of sequence A065677 (i.e. A065678(n) = min {m | A065677(m) >= n})

%H Colin Barker, <a href="/A065678/b065678.txt">Table of n, a(n) for n = 0..1000</a>

%H A. Behn, C. Kribs-Zaleta and V. Ponomarenko, <a href="http://www.jstor.org/stable/30037493">The convergence of difference boxes</a>, Amer. Math. Monthly 112 (2005), no. 5, 426-439.

%H J. Copeland and J. Haemer, <a href="http://alumnus.caltech.edu/~copeland/work/PDF/1999-02-women.pdf">Work: Differences Among Women</a>, SunExpert, 1999, pp. 38-43.

%H Raymond Greenwell, <a href="http://www.jstor.org/stable/3618447">The Game of Diffy</a>, Math. Gazette, Oct 1989, p. 222.

%H Peter J. Kernan (pete(AT)theory2.phys.cwru.edu), <a href="http://theory2.phys.cwru.edu/~pete/sequence.html">Algorithm and code</a> [Broken link]

%H Dawn J. Lawrie, <a href="http://www.cs.loyola.edu/~lawrie/CS630/F03/Projects/PA1/index.html">The Diffy game</a>.

%H Univ. Mass. Computer Science 121, <a href="http://www-unix.oit.umass.edu/~cs121/projects/project3/p3.htm">The Diffy Game</a> [Broken link]

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,1,0,0,1).

%F From _Colin Barker_, Feb 18 2015: (Start)

%F a(n) = 3*a(n-3)+a(n-6)+a(n-9).

%F G.f.: x*(x-1)*(x^8+x^6+x^5+x^4+x^3+3*x^2+2*x+1) / (x^9+x^6+3*x^3-1).

%F (End)

%e Since Diffy_length([0,0,0,0]) = 0 and Diffy_length([0,0,0,1]) = 4, we have A065678(1) = A065678(2) = A065678(3) = A065678(4) = 1.

%o (PARI) concat(0, Vec(x*(x-1)*(x^8+x^6+x^5+x^4+x^3+3*x^2+2*x+1)/(x^9+x^6+3*x^3-1) + O(x^100))) \\ _Colin Barker_, Feb 18 2015

%Y Cf. A065677.

%K nonn,easy

%O 0,6

%A _Jens Voß_, Nov 13 2001