login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065659
The table of permutations of N, each row induced by the rotation (to the left) of the n-th node in the infinite binary "decimal" fraction tree.
8
4, 16, 1, 22, 136, 1, 64, 3, 2, 1, 8, 64, 25, 2, 1, 160, 19, 4, 3, 76, 1, 1, 6, 5, 4, 3, 2, 1, 256, 7, 97, 5, 4, 3328, 2, 1, 32, 256, 13, 6, 167772160, 4, 3, 2, 1, 67, 1054, 8, 7, 6, 5, 4, 3, 2, 1, 34, 4, 9, 130, 7, 97, 5, 4, 3, 1249, 1, 1279, 40, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 12
OFFSET
0,1
COMMENTS
See the comment at A065658.
MAPLE
[seq(RotateBinFracLeftTable(j), j=0..119)]; RotateBinFracLeftTable := n -> RotateBinFracNodeLeft(1+(n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1);
RotateBinFracNodeLeft := (t, n) -> frac2position_in_0_1_SB_tree(RotateBinFracNodeLeft_x(t, SternBrocot0_1frac(n)));
RotateBinFracNodeLeft_x := proc(t, x) local num, den; den := 2^(1+floor_log_2(t)); num := (2*(t-(den/2)))+1; if((x <= (num-1)/den) or (x >= (num+1)/den)) then RETURN(x); fi; if(x >= ((2*num)+1)/(2*den)) then RETURN(((num-1)/den) + (2*(x - (num/den)))); fi; if(x > (num/den)) then RETURN(x - (1/(2*den))); fi; RETURN(((num-1)/den) + ((x-((num-1)/den))/2)); end;
SternBrocot0_1frac := proc(n) local m; m := n + 2^floor_log_2(n); SternBrocotTreeNum(m)/SternBrocotTreeDen(m); end;
frac2position_in_0_1_SB_tree := r -> RETURN(ReflectBinTreePermutation(cfrac2binexp(convert(1/r, confrac))));
CROSSREFS
The first row (rotate the top node left): A065661, 2nd row (rotate the top node's left child): A065663, 3rd row (rotate the top node's right child): A065665, 4th row: A065667, 5th row: A065669, 6th row: A065671, 7th row: A065673. Cf. also A065674-A065676. For the other needed Maple procedures follow A065658 which gives the inverse permutations.
Sequence in context: A228559 A165410 A016486 * A305833 A110650 A334840
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Nov 22 2001
STATUS
approved