login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Goldbach partitions of 10^n.
10

%I #26 Dec 17 2022 20:09:58

%S 2,6,28,127,810,5402,38807,291400,2274205,18200488,149091160,

%T 1243722370,10533150855,90350630388

%N Number of Goldbach partitions of 10^n.

%C Number of ways of writing 10^n as the sum of two odd primes, when the order does not matter.

%H Ivars Peterson's MathTrek, <a href="http://www.maa.org/mathland/mathtrek_8_21_00.html">Goldbach's Prime Pairs</a>

%H Science News Online, <a href="http://www.sciencenews.org/20000819/mathtrek.asp">Goldbach's Prime Pairs</a>, week of Aug. 19, 2000; Vol. 158, No. 8.

%F a(n) = A061358(10^n).

%e a(1)=2 because 10 = 3+7 = 5+5;

%e a(2)=6 because 100 = 3+97 = 11+89 = 17+83 = 29+71 = 41+59 = 47+53; ...

%t NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{c = 0, lmt = n/2, p = 3}, While[p <= lmt, If[ PrimeQ[n - p], c++ ]; p = NextPrim@p]; c]; Array[f, 10] (* _Robert G. Wilson v_, Nov 01 2006 *)

%t a[n]:=Length[Select[n - Prime[Range[PrimePi[n/2]]], PrimeQ]]; Table[a[n],{n, 10^3, 10^3}] (* _Luciano Ancora_, Mar 16 2015 *)

%Y Cf. A001031, A073610, A107318.

%K nonn,more

%O 1,1

%A _Robert G. Wilson v_, Dec 01 2001

%E a(9) from _Zak Seidov_ Nov 01 2006

%E a(10) from _R. J. Mathar_ and _David W. Wilson_, Nov 02 2006

%E a(11) from _David W. Wilson_ and _Russ Cox_, Nov 03 2006

%E a(12) from _Russ Cox_, Nov 04 2006

%E a(13) from _Donovan Johnson_, Nov 16 2009

%E a(14) from Huang Yuanbing (bailuzhou(AT)163.com), Dec 24 2009