login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of Faulhaber numbers (numerators) read by rows.
2

%I #16 Jul 04 2020 04:13:23

%S 1,0,1,0,-1,1,0,1,-1,1,0,-3,3,-1,1,0,5,-5,17,-2,1,0,-691,691,-118,41,

%T -5,1,0,35,-35,359,-44,14,-1,1,0,-3617,3617,-1237,1519,-293,22,-7,1,0,

%U 43867,-43867,750167,-13166,2829,-2258,217,-4,1,0,-1222277,1222277,-627073,1540967,-198793,689,-235,46,-3,1

%N Triangle of Faulhaber numbers (numerators) read by rows.

%C From _Wolfdieter Lang_, Jun 25 2011: (Start)

%C In the Gessel and Viennot reference f(n,k) = a(n,k)/A065553(n,k), n>=0, k>=0.

%C (n+1)*f(n,k) = A(n+1,n-k), with Knuth's A(m,k) =

%C A093556(m,k)/A093557(m,k). See the Knuth reference given in A093556, and the W. Lang link. (End)

%H Ira M. Gessel and X. G. Viennot, <a href="http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf">Determinants, paths and plane partitions</a>, 1989, p. 27, eqn 12.2

%F sum(n>=0, k>=0, f(n, k)*t^k*x^(2*n+1)/(2*n+1)! ) is the expansion of (cosh(sqrt(1+4*t)*x/2)-cosh(x/2))/t/sinh(x/2).

%F a(n,k)=numerator(f(n,k)).

%e Triangle begins:

%e {1},

%e {0, 1},

%e {0, -1, 1},

%e {0, 1, -1, 1},

%e {0, -3, 3, -1, 1},

%e {0, 5, -5, 17, -2, 1}.

%Y Cf. A065553.

%Y Cf. A103438.

%K frac,sign,tabl

%O 0,12

%A _Wouter Meeussen_, Dec 02 2001