login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Differences between products of 2 primes.
64

%I #27 Dec 26 2020 02:10:36

%S 2,3,1,4,1,6,1,3,1,7,1,1,3,1,7,3,2,4,2,1,4,3,4,5,3,5,3,1,1,4,2,1,1,11,

%T 5,4,3,1,2,1,1,6,4,1,7,1,1,2,1,9,3,1,2,5,3,8,1,5,2,2,7,7,1,1,2,1,3,4,

%U 1,1,2,1,1,2,5,9,2,10,2,4,1,5,3,3,2,7,4,9,2,2,4,3,1,2,1,1,2,4,5,5,2,2,3,1,2

%N Differences between products of 2 primes.

%C See A215231 and A085809 for record values and where they occur: A215231(n) = a(A085809(n)). - _Reinhard Zumkeller_, Mar 23 2014

%H T. D. Noe, <a href="/A065516/b065516.txt">Table of n, a(n) for n=1..10000</a>

%F a(n) = A001358(n+1) - A001358(n).

%e a(6) = A001358(7) - A001358(6) = 21 - 15 = 6.

%t Differences[Select[Range[329], PrimeOmega[#] == 2 &]] (* _Arkadiusz Wesolowski_, Nov 24 2011 *)

%o (PARI) {spg(m)=local(a,b); a=0; b=4; for(n=5,m,if(bigomega(n) == 2,a=n; print1(a-b","); b=a; ))}

%o (Haskell)

%o a065516 n = a065516_list !! (n-1)

%o a065516_list = zipWith (-) (tail a001358_list) a001358_list

%o -- _Reinhard Zumkeller_, Mar 23 2014

%Y A166237 is the version for distinct primes.

%Y Cf. A001358, A239656.

%K easy,nonn

%O 1,1

%A _Lior Manor_, Nov 27 2001

%E More terms from _Jason Earls_, Jul 24 2003