login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p^4 - p^3 + p^2 - p + 1 is prime.
1

%I #11 May 20 2019 14:43:40

%S 2,3,5,11,37,43,47,71,131,157,223,251,257,307,487,641,1087,1093,1187,

%T 1291,1433,1567,1621,1637,1831,1873,1901,2017,2111,2143,2293,2333,

%U 2473,2621,2663,2683,2707,2777,2843,2903,3257,3413,3463,3613,3617,3761,3793

%N Primes p such that p^4 - p^3 + p^2 - p + 1 is prime.

%H Harry J. Smith, <a href="/A065510/b065510.txt">Table of n, a(n) for n = 1..1000</a>

%t Select[Prime[Range[600]],PrimeQ[#^4-#^3+#^2-#+1]&] (* _Harvey P. Dale_, May 20 2019 *)

%o (PARI) { n=0; for (m=1, 10^9, p=prime(m); if (isprime(p^4 - p^3 + p^2 - p + 1), write("b065510.txt", n++, " ", p); if (n==1000, return)) ) } \\ _Harry J. Smith_, Oct 20 2009

%Y Cf. A053182.

%K easy,nonn

%O 1,1

%A _Vladeta Jovovic_, Nov 26 2001