Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 13 2021 10:05:50
%S 9,8,8,5,0,4,3,9,7,7,4,1,2,4,6,9,0,8,7,5,1,1,0,6,6,2,3,8,5,1,1,8,6,6,
%T 6,4,4,0,0,9,5,8,0,8,3,2,7,5,3,4,6,1,8,8,1,2,0,5,1,3,9,2,6,2,4,4,0,5,
%U 7,8,4,7,5,7,3,0,8,5,7,9,3,5,1,8,8,8,0,0,7,5,3,6,7,7,2,5,7,3
%N Decimal expansion of Product_{p prime} (1 - 1/(p^5*(p+1))).
%H R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into...</a>, arXiv:0903.2514 [math.NT], 2009-2011, Table 5, constant Q_1^(5).
%H G. Niklasch, <a href="/A001692/a001692.html">Some number theoretical constants: 1000-digit values</a>. [Cached copy]
%e 0.9885043977412469087511066238511866644...
%t $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0, 0, 0, 0}, LinearRecurrence[{-2, -1, 0, 0, 0, 1, 1}, {-6, 7, -8, 9, -10, 11, -18}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Apr 18 2016 *)
%o (PARI) prodeulerrat(1 - 1/(p^5*(p+1))) \\ _Amiram Eldar_, Mar 13 2021
%Y Cf. A078083.
%K cons,nonn
%O 0,1
%A _N. J. A. Sloane_, Nov 19 2001