login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n-1)^n.
20

%I #46 Dec 31 2021 15:41:44

%S 1,0,1,8,81,1024,15625,279936,5764801,134217728,3486784401,

%T 100000000000,3138428376721,106993205379072,3937376385699289,

%U 155568095557812224,6568408355712890625,295147905179352825856,14063084452067724991009,708235345355337676357632

%N a(n) = (n-1)^n.

%C a(n) is the number of functions from {1,2,...,n} into {1,2,...,n} that have no fixed points.

%C The probability that a random function from {1,2,...,n} into {1,2,...,n} has no fixed point is equal to a(n)/n^n; it tends to 1/e when n tends to infinity. - _Robert FERREOL_, Mar 29 2017

%H Harry J. Smith, <a href="/A065440/b065440.txt">Table of n, a(n) for n = 0..100</a>

%H Mustafa Obaid et al., <a href="http://arxiv.org/abs/1307.7573">The number of complete exceptional sequences for a Dynkin algebra</a>, arXiv preprint arXiv:1307.7573 [math.RT], 2013.

%F a(n) = A007778(n-1).

%F E.g.f.: x/(T(x)*(1-T(x))) (where T(x) is Euler's tree function, the E.g.f. for n^(n-1)) (see A000169).

%F a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*n^(n-k). - _Robert FERREOL_, Mar 28 2017

%t Table[(n-1)^n,{n,0,20}] (* _Harvey P. Dale_, Jan 03 2015 *)

%o (PARI) { for (n=0, 100, write("b065440.txt", n, " ", (n - 1)^n) ) } \\ _Harry J. Smith_, Oct 19 2009

%Y Essentially the same as A007778 - note T(x) = -W(-x)).

%Y Column k=0 of A055134.

%Y Row sums of A350452.

%Y Cf. A284458.

%K nonn,easy

%O 0,4

%A _Len Smiley_, Nov 17 2001