login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of binary string substitutions: a(i,j) is obtained by substituting i for each 1-bit in j.
4

%I #13 Feb 11 2023 09:10:15

%S 1,2,2,3,4,3,4,6,10,4,5,8,15,8,5,6,10,36,12,18,6,7,12,45,16,27,20,7,8,

%T 14,54,20,68,30,42,8,9,16,63,24,85,72,63,16,9,10,18,136,28,102,90,292,

%U 24,34,10,11,20,153,32,119,108,365,32,51,36,11,12,22,170,36,264,126,438,40,132,54,74,12

%N Table of binary string substitutions: a(i,j) is obtained by substituting i for each 1-bit in j.

%F Table origin is a(1,1).

%F a(1,n) = a(n,1) = n.

%F a(0,n) = a(n,0) = 0.

%F a(i,j) = A065158(i,j)*i.

%F a(n,n) = A065159(n) = A065160(n)*n.

%e a(3,5): 5 = 101_2 -> (3)0(3) = (11)0(11)_2 = 11011_2 = 27.

%e a(5,3): 3 = 11_2 -> (5)(5) = (101)(101)_2 = 101101_2 = 45.

%o (PARI) T(n,k) = my(bk=binary(k), sn=Str(fromdigits(binary(n))), s=""); for (i=1, #bk, if (bk[i] == 1, s=concat(s, sn), s=concat(s, "0"))); fromdigits(apply(eval, Vec(s)), 2); \\ _Michel Marcus_, Feb 11 2023

%Y Cf. A065158, A065159, A065160.

%K base,easy,nonn,tabl

%O 1,2

%A _Marc LeBrun_, Oct 18 2001