login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A065140
a(n) = 2^n*(2*n)!.
4
1, 4, 96, 5760, 645120, 116121600, 30656102400, 11158821273600, 5356234211328000, 3278015337332736000, 2491291656372879360000, 2301953490488540528640000, 2541356653499348743618560000
OFFSET
0,2
LINKS
FORMULA
Hypergeometric generating function, in Maple notation: 1/sqrt(1-8*x), i.e., a(0)=1, a(n)=round(evalf(subs(x=0, n!*diff(1/(sqrt(1-8*x)), x$n)))), n=1, 2,... Integral representation as n-th moment of a positive function on a positive half-axis: a(n)=int(x^n*exp(-sqrt(x/2))/(2*sqrt(2*x)), x=0..infinity), n=0, 1, ....
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*x*(k+1)*(2*k+1)/(4*x*(k+1)*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(sqrt(2)/2).
Sum_{n>=0} (-1)^n/a(n) = cos(sqrt(2)/2). (End)
MATHEMATICA
Table[2^n (2n)!, {n, 0, 15}] (* Harvey P. Dale, Nov 28 2011 *)
PROG
(PARI) { for (n=0, 100, write("b065140.txt", n, " ", 2^n*(2*n)!) ) } \\ Harry J. Smith, Oct 11 2009
CROSSREFS
Sequence in context: A077155 A013042 A190196 * A007106 A111637 A027872
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 16 2001
STATUS
approved