login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Weight 5 level 11 cusp form with complex multiplication by Q(sqrt(11)) and trivial character.
5

%I #24 Sep 08 2022 08:45:04

%S 1,0,7,16,-49,0,0,0,-32,0,121,112,0,0,-343,256,0,0,0,-784,0,0,167,0,

%T 1776,0,-791,0,0,0,-553,0,847,0,0,-512,-2113,0,0,0,0,0,0,1936,1568,0,

%U -1918,1792,2401,0,0,0,-718,0,-5929,0,0,0,4487,-5488,0,0,0,4096

%N Weight 5 level 11 cusp form with complex multiplication by Q(sqrt(11)) and trivial character.

%C This is a member of an infinite family of odd weight level 11 multiplicative modular forms. g_1 = A035179, g_3 = A129522, g_5 = A065099, g_7 = A138661. - _Michael Somos_, Jun 07 2015

%H K. Ono, <a href="https://doi.org/10.1006/jnth.1998.2354">On the Circular Summation of the Eleventh Powers of Ramanujan's Theta Function</a>, Journal of Number Theory, Volume 76, Issue 1, May 1999, Pages 62-65.

%H G. Shimura, <a href="https://projecteuclid.org/euclid.nmj/1118798376">On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields</a>, Nagoya Math. J. 43 (1971) p. 205.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^(5/2) (t/i)^5 f(t) where q = exp(2 Pi i t). - _Michael Somos_, Jun 08 2007

%F a(n) is multiplicative with a(11^e) = 121^e, a(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 2, 6, 7, 8, 10 (mod 11), a(p^e) = a(p) * a(p^(e-1)) - p^4 * a(p^(e-2)) if p == 1, 3, 4, 5, 9 (mod 11) where a(p) = y^4 - 4 * p*y^2 + 2 * p^2 and 4*p = y^2 + 11 * x^2. - _Michael Somos_, Jun 08 2007

%e G.f. = q + 7*q^3 + 16*q^4 - 49*q^5 - 32*q^9 + 121*q^11 + 112*q^12 - 343*q^15 + ...

%t a[ n_] := SeriesCoefficient[ With[{F1 = (QPochhammer[ q] QPochhammer[ q^11])^2, F2 = (QPochhammer[ q^2] QPochhammer[ q^22])^2, F3 = (QPochhammer[ q^2] QPochhammer[ q^22])^3, F4 = (QPochhammer[ q^4] QPochhammer[ q^44])^2}, (F1^4 + 8 q F1^3 F2 + 32 q^2 F1^2 F2^2 + 88 q^3 F1 F2^3 + 64 q^4 F2^4 + 96 q^6 F4 F2^3 + 128 q^5 F1 F4 (F2^2 + q^2 F2 F4 + q^4 F4^2)) / F3], {q, 0, n}]; (* _Michael Somos_, Jun 07 2015 *)

%o (PARI) { B(N,a,x,y,x2,y2)= a=vector(N); for (x=0,floor(sqrt(4*N)), for (y=0,floor(sqrt(4*N/11)),x2=x*x; y2=y*y; n=(x2+11*y2); if (n%4==0 && n<=4*N && n>0, w=(2*x2*x2-132*x2*y2+242*y2*y2)/32; a[n/4]+=w; if (x*y !=0, a[n/4]+=w)))); a }

%o (PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==11, 121^e, kronecker( -11, p)==-1, if( e%2, 0, p^(2*e)), for( x=1, sqrtint(4*p\11), if( issquare(4*p - 11*x^2, &y), break)); y = y^4 - 4 * p*y^2 + 2 * p^2; a0=1; a1=y; for( i=2, e, x=y*a1 - p^4*a0; a0=a1; a1=x); a1)))}; /* _Michael Somos_, Jun 08 2007 */

%o (PARI) {a(n) = my(A, F1, F2, F4); if( n<1, 0, n--; A = x * O(x^n); F1 = (eta(x + A) * eta(x^11 + A))^2; F2 = (eta(x^2 + A) * eta(x^22 + A))^2; F4 = (eta(x^4 + A) * eta(x^44 + A))^2; polcoeff( (F1^4 + 8 * x * F1^3*F2 + 32 * x^2 * F1^2*F2^2 + 88 * x^3 * F1*F2^3 + 64 * x^4 * F2^4 + 96 * x^6 * F4*F2^3 + 128 * x^5 * F1*F4 * (F2^2 + x^2 * F2*F4 + x^4 * F4^2)) / (eta(x^2 + A) * eta(x^22 + A))^3, n))}; /* _Michael Somos_, Jun 08 2007 */

%o (PARI) {a(n) = if( n<1, 0, n*=4; sum( y=0, sqrtint(n\11), if( issquare( n - 11 * y^2), if( (n > 11*y^2) && y, 2, 1) * (n^2 - 88 * n*y^2 + 968 * y^4) / 16)))}; /* _Michael Somos_, Jun 08 2007 */

%o (Magma) A := Basis( CuspForms( Gamma1(11), 5), 71); A[1] + 7*A[3] + 16*A[4] - 49*A[5] - 32*A[9] + 121*A[11] + 112*A[12] - 343*A[15]; /* _Michael Somos_, Aug 26 2015 */

%Y Cf. A035179, A129522, A138661.

%K sign,mult

%O 1,3

%A Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Nov 20 2001