Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 13 2024 02:22:57
%S 1,2,5,8,16,20,36,44,68,76,120,124,188,196,276,272,404,380,544,532,
%T 716,668,968,860,1184,1120,1472,1332,1896,1624,2204,2036,2656,2352,
%U 3284,2752,3684,3356,4324,3744,5192,4312,5720,5180,6540,5628,7768,6388,8476
%N Convolution of A000010 with itself.
%H Vaclav Kotesovec, <a href="/A065093/b065093.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith)
%H A. E. Ingham, <a href="https://doi.org/10.1112/jlms/s1-2.3.202">Some asymptotic formulae in the theory of numbers</a>, Journal of the London Mathematical Society, Vol. s1-2, No. 3 (1927), pp. 202-208.
%F a(n) = Sum_{k=1..n} phi(k)*phi(n+1-k), where phi is Euler totient function (A000010).
%F G.f.: (1/x)*(Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2)^2. - _Ilya Gutkovskiy_, Jan 31 2017
%F a(n) ~ (n^3/6) * c * Product_{primes p|n+1} ((p^3-2*p+1)/(p*(p^2-2))), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474) (Ingham, 1927). - _Amiram Eldar_, Jul 13 2024
%t Table[Sum[EulerPhi[j]*EulerPhi[n-j], {j, 1, n-1}], {n, 2, 50}] (* _Vaclav Kotesovec_, Aug 18 2021 *)
%o (PARI) { for (n=1, 1000, a=sum(k=1, n, eulerphi(k)*eulerphi(n+1-k)); write("b065093.txt", n, " ", a) ) } \\ _Harry J. Smith_, Oct 06 2009
%Y Cf. A000010, A000385, A055507, A065474, A330319.
%Y Column k=2 of A340995.
%K easy,nonn
%O 1,2
%A _Vladeta Jovovic_, Nov 11 2001