login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A065017
Primes of the form p*q + p + q, where (p, q=p+2) are twin primes.
2
23, 47, 167, 359, 1847, 3719, 10607, 19319, 97967, 177239, 273527, 657719, 1042439, 1104599, 1329407, 1515359, 1745039, 2042039, 4464767, 5013119, 5148359, 9740639, 11095559, 11377127, 12538679, 16024007, 16410599, 16752647
OFFSET
1,1
COMMENTS
The resulting prime can never be a twin prime since the odd number preceding it is divisible by three and the following odd number is a perfect square.
LINKS
FORMULA
p^2 + 4*p + 2.
EXAMPLE
(3*5) + (3+5) = 23.
MATHEMATICA
NextPrim[n_] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; Return[k]]; k = 1; Do[k = NextPrim[k]; If[ PrimeQ[k + 2], p = k*(k + 2) + 2k + 2; If[ PrimeQ[p], Print[p]]], {n, 1, 700} ]
f[n_]:=Module[{x=Total[n]+Times@@n}, If[PrimeQ[x], x, 0]]; Select[f/@ (Select[Partition[Prime[Range[700]], 2, 1], Last[#]-First[#]==2&]), #!=0&] (* Harvey P. Dale, May 11 2011 *)
PROG
(PARI) { n=p=0; for (m=1, 10^9, p=nextprime(p + 1); if (isprime(q=p + 2) && isprime(a=p*q + p + q), write("b065017.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 03 2009
CROSSREFS
Sequence in context: A042050 A139857 A139900 * A140618 A042052 A136030
KEYWORD
nonn
AUTHOR
Stephan Wagler (stephanwagler(AT)aol.com), Nov 01 2001
EXTENSIONS
Offset changed from 0 to 1 by Harry J. Smith, Oct 03 2009
STATUS
approved