login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Stirling transform of Catalan numbers: a(n) = Sum_{k=0..n} stirling2(n,k)*binomial(2*k,k)/(k+1).
14

%I #27 Aug 04 2021 10:08:18

%S 1,1,3,12,59,338,2185,15613,121553,1020170,9154963,87276995,879242215,

%T 9319182044,103537712361,1201967382478,14540040004755,182840037042560,

%U 2384985091689409,32209645344213417,449608555748234353,6476887237235672388,96156363230696213447

%N Stirling transform of Catalan numbers: a(n) = Sum_{k=0..n} stirling2(n,k)*binomial(2*k,k)/(k+1).

%H Robert Israel, <a href="/A064856/b064856.txt">Table of n, a(n) for n = 0..400</a>

%F O.g.f.: Sum_{n>=1} C(2*n,n)/(n+1) * x^n / Product_{k=0..n} (1-k*x). - _Paul D. Hanna_, Jul 20 2011

%F E.g.f.: exp(2*exp(z)-2)*(BesselI(0, 2*exp(z)-2)-BesselI(1, 2*exp(z)-2)). Representation as a sum of an infinite series involving the confluent hypergeometric function 1F1, in Maple notation: a(n)=evalf(sum('k'^n*2^(2*'k')*GAMMA('k'+1/2)*evalf(hypergeom(['k'+1/2], ['k'+2], -4))/(sqrt(Pi)*'k'!*('k'+1)!), 'k'=0..infinity)), n=0, 1...

%F E.g.f.: hypergeom([1/2], [2], 4*(exp(x)-1)). - _Vladeta Jovovic_, Sep 11 2003

%p seq(add(Stirling2(n,k)*binomial(2*k,k)/(k+1),k=0..n), n=0..50); # _Robert Israel_, Sep 16 2016

%t Table[Sum[StirlingS2[n,k] Binomial[2k,k]/(k+1),{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Nov 01 2011 *)

%o (PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!/(m!*(m+1)!)*x^m/prod(k=1, m, 1-k*x+x*O(x^n))), n)} /* _Paul D. Hanna_, Jul 20 2011 */

%Y Cf. A000108, A066053, A086672.

%K nice,nonn

%O 0,3

%A _Karol A. Penson_, Oct 08 2001