Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 19 2018 05:12:51
%S -1874131,-7379971,200535078449,614889782525749169,
%T 7858321551080266924799489,267064515689275851355623723492869,
%U 23984823528925228172706521638691738510609,4014476939333036189094441199026045136644989502689,1492182350939279320058875736615841068547583863325477042409
%N a(n) = Product_{k=1..4*n-9} prime(k) - prime(4n)^4 where prime(i) = i-th prime.
%C It is known that a(n) > 0 for n >= 5.
%H Harry J. Smith, <a href="/A064820/b064820.txt">Table of n, a(n) for n = 3..50</a>
%H S. E. Mamangakis, <a href="https://doi.org/10.1215/S0012-7094-62-02946-0">Synthetic proof of some prime number inequalities</a>, Duke Math. J., 29 (1962), 471-473.
%o (PARI) { for (n=3, 50, p=prod(k=1, 4*n-9, prime(k)); write("b064820.txt", n, " ", p - prime(4*n)^4) ) } \\ _Harry J. Smith_, Sep 27 2009
%K sign
%O 3,1
%A _N. J. A. Sloane_, Oct 23 2001